九叔归来3魁蛊婴在线观看_男人躁女人到高潮AV_香港成人论坛_亚洲精品久久久久久偷窥_夜来香成人网_亚洲制服 视频在线观看_无毒黄站_国产传媒18精品A片一区_麻花豆传媒剧国产MV在线观看_东北60岁熟女露脸在线_国产高清视频在线观看97_一道本视频一二三区_yellow免费播放在线观看_浪漫樱花动漫在线观看官网_高清AV熟女一区_天堂在线www_亚洲第一成年人网站_黄色在线免费观看_av女优快播_久久精品99国产精品日本

English | 中文版 | 手機版 企業登錄 | 個人登錄 | 郵件訂閱
當前位置 > 首頁 > 技術文章 > 基于SVM算法和超色調的高光譜圖像中的綠色植物分割方法

基于SVM算法和超色調的高光譜圖像中的綠色植物分割方法

瀏覽次數:1636 發布日期:2021-10-8  來源:本站 僅供參考,謝絕轉載,否則責任自負

Green plant segmentation in hyperspectral images using SVM and hyper-hue

基于SVM算法和超色調的高光譜圖像中的綠色植物分割

 

綠色植物分割在基于高光譜的植物表型分析中起著重要的作用,然而,這一主題并沒有得到足夠的重視。現有的圖像分割方法依賴于數據類型、植物和背景,可能沒有利用高光譜數據的能力。本文提出了一種單類支持向量機分類器,結合超色調預處理方法對高光譜圖像中的綠色植物像素進行分割。實驗結果表明,該方法能夠以較小的誤差從背景中分割出綠色植物,因此可以作為基于高光譜的綠色植物分割的通用方法。

 

為了評估步驟4中超色調的貢獻,應用了另一個使用類似訓練過程而忽略步驟4的模型,在本文中被命名為REF。首先,使用驗證數據對模型進行驗證,誤差列于表 1,其中 FP、FN 和 MIS 分別代表假陽性率、假陰性率和誤分類率。表 1 表明,與 REF 方法相比,HH 方法可以將誤差降低到較低階的水平。超色調與飽和度和強度無關,因此受局部表面角度偏差和植物自身陰影不穩定照明的影響較小。此外,超色調可以增加類間距離。接下來,使用小麥、大麥、棉花、箭葉三葉草和澳大利亞金絲雀草的高光譜圖像對模型進行了測試。對于每個物種,隨機選擇獨立于訓練和驗證數據的高光譜圖像進行測試。首先使用Photoshop軟件對圖像進行手動分割,然后與自動分割進行比較。在 VNIR 數據中,比較了幾個廣為接受的植被指數,包括 NDVI、GNDVI、EVI等,發現使用閾值為0.3的 EVI 的方法可以提供最佳分割。在VNIR數據中測試了EVI、REF和HH方法的性能,而在SWIR數據中僅測試了REF和HH方法的性能。誤分類率繪制在圖1和圖2中,它們表明HH方法顯著減少了誤差。圖3顯示了REF和HH方法在SWIR數據中分割大麥的測試圖像。

 

表1.SVM 模型驗證的誤差率

 

圖1.VNIR 測試數據中的錯誤分類率

圖2.SWIR 測試數據中的錯誤分類率

 

在測試數據中,錯誤率高于驗證數據。有幾個因素可能導致測試數據的錯誤率較高。首先,在人工分割中,葉子邊緣的像素被分類為前景,而在自動分類中,這些像素可以被分類為背景,因為這些像素的光譜特征是背景和植物的混合。其次,手動分割可能會有錯誤,特別是對于小麥和大麥這種窄葉植物。分割后的圖像將被進一步處理,以分析植物中的營養分布,包括氮、磷等。分割的精度可以滿足這一要求。使用較大的訓練數據來訓練更復雜的模型,如人工神經網絡(ANN)或深度ANN,將獲得相同或更好的結果,但是,當考慮到勞動力和數據收集成本時,最好使用較小的數據集來訓練具有可接受精度的模型。

 

   

圖3.SWIR數據中大麥分割REF和HH方法的測試圖像(紅色標記為植物輪廓)

發布者:北京博普特科技有限公司
聯系電話:010-82794912
E-mail:1206080536@qq.com

用戶名: 密碼: 匿名 快速注冊 忘記密碼
評論只代表網友觀點,不代表本站觀點。 請輸入驗證碼: 8795
Copyright(C) 1998-2025 生物器材網 電話:021-64166852;13621656896 E-mail:info@bio-equip.com
主站蜘蛛池模板: 达孜县| 天峨县| 秦皇岛市| 湖北省| 江油市| 拉孜县| 永顺县| 新安县| 兴化市| 平陆县| 台湾省| 湛江市| 六安市| 灵寿县| 剑河县| 罗源县| 娱乐| 泸州市| 曲阜市| 通榆县| 石河子市| 凤冈县| 江阴市| 广安市| 呼伦贝尔市| 台东市| 吉安县| 阿合奇县| 崇左市| 定兴县| 栖霞市| 麟游县| 靖宇县| 宜章县| 子长县| 宣城市| 龙州县| 和政县| 根河市| 临海市| 石门县|